When I built my workbench, I did not include a sliding deadman because I was tired, lazy, etc. I said to myself that I’d add one when I needed it (or I actually felt like doing it), and just put some grooves inside the front frame of the bench.
I’d been tempted to make it several times over the past few months, but last week, as I was working on the stretchers for the new auxiliary bench, I found myself trying to square off the top of some medium-sized stretchers and not having a very good time of it. I thought to myself that I’d try the old “prop up the other end of the work with something” trick, and that was not at all pleasant.
So it was time. As I mentioned, I’d been thinking about this and had read the description in the Chris Schwarz book, and that had me worried. See, I had only plowed a measly little 1/4″ groove on both the stretcher and the underside of the workbench:
But the benches described everywhere have a triangular-profile rail (or “track”) on the bottom, and Schwarz says to plow a big, deep 1/2″ or so groove in the underside of the top so that you can clear that thing. He also integrates the track into the stretcher at times. I was worried, because I thought that maybe this was going to be a lot of work, or I otherwise screwed up in some massive way–it wouldn’t be the first time. The triangular-profile rail is a really good idea because it keeps shavings, dust, and small children out of a groove.
So in a fit of nervous twitching, I looked for a way around this. I made a rail in a triangular profile, and put a tongue on the bottom so that it would fit into the groove on the stretcher. Here’s a photo of how that looks (along with the deadman, showing the mating profile on the underside of that):
The theory here is that when you install the deadman, you do it in a unit with the rail. This way, only the tongue on the bottom of the rail needs to clear the stretcher when installing. Because this is significantly shallower than the really deep thing on the deadman, it would require far less of a groove in underside of the top.
Much to my surprise, this actually worked. Cutting that tongue on the bottom of the rail was a pain that I’d rather not recount (note to self: just tack the offcuts from the other side to my sticking board next time.).
I should mention that though I made the tongue with hand tools, I cheerfully turned to my bandsaw to do the profile on the top of the rail, as well as the channel on the bottom of the deadman. I guess I did all of the holes with a brace and auger bit (despite actually owning a drill press now):
With all of this done, it was time to see if it actually works in practice, and in that respect, it’s certainly an improvement:
There is a lingering question I have, though. In the first Schwarz book, when describing the deadman of the French bench, he says to cut a curve on each side so that you can get a hand between the deadman and a leg when up against a leg. I don’t get this; why would you need to put your hand there? It’s not to facilitate moving the deadman; you can just grab it from the other side and pull it over with zero effort.
In later work (the LVL bench), Schwarz says that a straight board will work but that a straight board is boring. I will admit that the curve makes it look cooler. But I’ve never been very cool. So I’ll leave it as-is until I have a real reason to change it.
The vise installations meant that the bench was nearly complete. I did some other minor preparation, such as plowing the grooves for the (as of yet nonexistant) sliding deadman and sawing the legs to length, and then I was ready to assemble. I’d never actually assembled the bench, and for a while, I wasn’t really sure how I’d do it. Thinking about it made my arms hurt.
Thankfully, I came to my senses at some point, and when I was ready, I set out two 2x4s to support the benchtop. With the help of SWMBO, I put the top upside-down on these boards:
Then I was able to put all of the legs and stretchers in for the first time. Everything fit perfectly:
Getting the bench right-side-up simply involved turning the bench on its side (there’s another board underneath the leg here to protect the roller bracket):
And one final lift to get it on its legs for the first time.
Next, I installed and fine-tuned the chops of the leg and tail vises. The description of that is in those preceding posts (meaning that, yes, I was done with this business before I posted those). It was fun to use the new bench for finishing itself! However, there was one little minor vise item that I hadn’t done, and that was to make a handle for the parallel guide pin. I’d considered making this completely spartan (basically, just a block of wood with the pin in it), but then I noticed that I had just enough wood in what remained of the piece of cherry that I’d used for the roller brackets, and made a really quick-and-dirty handle with my saw rasp:
Finally, I sawed off the uneven ends of the bench and it was done:
The front view, somewhat encumbered by the lack of space in the shop:
There are a few minor things left to do, such as the sliding deadman, the shelf, and maybe a tool rack. I can do those at my leisure.
Thanks again to Bill K. (who supplied the douglas-fir) and everyone else who helped me with this. Now it’s time to get back to making furniture.
Right on the heels of the leg vise installation, I did the tail vise. I’ve never had a tail vise, but I’ve always wanted one. As it turns out, AJCP&R got me the Veritas quick-release version about two years ago (thanks again!), but it had to sit in its box for all of this time, waiting for this new bench to be made. That day finally arrived.
There’s been a bit written about the Veritas vise, but what I don’t see much out there about how versatile it is if you’re willing to play around with the shape of the chop. For example, although it’s designed to be used in conjunction with a wide front apron, that’s not necessary. In addition, you don’t need a whole 17″ of free space for overhang on the end. I broke both of these rules in my installation and I got away with it.
For those who have never seen the vise hardware, it consists of a the vise itself and a mounting plate that you attach to the bottom of your bench. The mounting plate provides the accuracy you need to keep the vise chop just far enough away from the edge of your bench to slide freely. You’re supposed to place the plate 1/4″ from the chop edge, all the way at the end of the bench. I didn’t do that. I discovered that you can get away with moving it about two inches away from the end of the bench, as long as you don’t obstruct the holes for mounting the chop (and you could even do that a little, if you’re willing to give up a bit of the vise’s travel):
The 1/4″ on the front side, however, is a (mostly) hard and fast rule. Here’s how the vise looks aligned on the mounting plate:
Notice that some of the vise hardware slips underneath the end of the bench. Also, some of the hardware on the other side (near where the leg will go, on the right side of this photo) protrudes in that area. I was able to do this because I decided to make the chop deep enough so that this little bit of hardware could slip behind the leg. You could do even more by widening the chop a bit more, but I personally wouldn’t recommend more than four inches because otherwise, you might put the hardware in the way of holdfast holes or something. As long as you don’t have anything silly up there such as a top stretcher between your bench legs, you should be fine.
OK, so the hardware fits. The next rule to break was the wide front apron. Because I designed this for a deep chop, I was able to make the inside of the chop wide (for the mounting screws), but the outside (the part that goes along the front of the bench) would be just the same 3.5″ beech that I used on the rest of the bench. Here’s a view of the chop upside down:
Oopsie on the blowout for the washer holes at the edges, but it hardly matters. At this point in the bench build, I was starting to starve for wood–I had very little douglas-fir of substantial size left. So for the backing piece, I milled and glued up two smaller pieces, and then glued those to the beech.
When it was upright and finished, it looked like this:
I had sort of a hard time trying to decide where to put the dog holes. In the end, I actually followed Lee Valley’s instructions and put the centers 1″ from the front of the bench. I could put in another row if necessary, but somehow I doubt it will be.
This vise really was a snap to install. You have to be quite careful when installing the mounting plate, but it took me longer to the make the chop with all of the milling and glue.
With the large frame components done, I could now work on the bench’s vises. Like everyone else in the known universe, I got a Benchcrafted Glide leg vise for the front (thanks SWMBO!).
The installation is not what I’d call easy, but it’s not ridiculously difficult, either. The first step was to put the holes in the chop (a big chunk of beech I found in the pile), and the leg.
For the chop, you’re supposed to put a shallow hole for a washer around the screw clearance hole–a 1.75″-diameter hole. The only thing I had in that size was an expansion bit. Now, those bits are not known to be terribly good even in soft woods, much less something like beech, but thankfully, this thing needed be just 3/16″ deep, so I used it mainly for the cutting spurs to get the circle.
Now, the main screw clearance holes in the chop and the leg are supposed to be 1.5″ wide, and I didn’t happen to have a No. 24 bit, either. I was all ready to wimp out and turn to the dark side, and in fact, I’d brought the chop and the leg to my friend Jasen’s place to make use of his drill press and Forstner bit. However, while preparing, I poked through his box of auger bits and found a No. 24 Irwin solid-core bit. Arrangements were made to abscond with the bit, and so mad props to Jasen for letting me do so!
I used my 14″ sweep monster (a Millers Falls #730). For those of you who have never seen a bit this large, consider the following: The brace’s chuck was just barely able to hold the bit, and only because they tapered the shaft thinner near the end.
This is the type of job that you have to break out the squares to keep the bore straight:
This is a big job, and it was no small amount of effort to turn the brace. The most difficult part of it, however, was to keep everything straight while exerting enough force.
Once the hole was through, I knocked out the waste in the outer washer hole–my Veritas mini router plane struck again:
So, when everything was said and done, I had two holes: one fancy, one not-so-fancy, both big:
After this, it was off to mark, drill, and tap the holes to attach the handwheel and screw to the chop. This is a particularly tricky job–you really need accurately lay out and drill those holes. (Thank goodness for auger bits.)
Now, a suspicious reader may have examined some of the photos above and noticed that I was using a peculiar piece of sacrificial wood underneath the chop for blowout prevention and lead-screw continuity:
This might qualify as the dumbest use of cherry in history, but notice the check (actually, compound checks) in the center. This precluded me from making a saw handle or something nice with it, but after I finished wrecking the center, I sawed off the usable wood on the sides for the Glide vise’s roller brackets:
This is sort of more silly luck than clever, I’d think–this offcut was the only thing I had around that wouldn’t require sawing up another board just for a couple of 6″ blocks.
I should also mention that with this bench, I am not trying to use a bunch of different woods to make it a showcase piece–I just want the thing to work. So, having now used three woods (the other two being douglas-fir and beech), I figured I’d use whatever I could find for the parallel guide, and I found none other than the last offcut of that nasty birch that I used as a secondary drawer wood on the second nightstand project.
Another thing that you may have noticed is that the hole in the leg isn’t horizontally centered. This is where I might eventually look like a goat, but I decided to try something a little different with this vise. Looking at the design of a leg vise and the diagonal one that Schwarz used in the “English Workbench” in his first workbench book, it dawned on me that the spot with the highest and most stable gripping power on a leg vise is directly opposite the parallel guide. On most of them, that’s in the center of the chop at the top, but that’s not where you would clamp a number of workpieces because the vise screw is in the way.
But on the diagonal vise, you don’t have that problem. So for better or for worse, I decided to put the parallel guide off to one side of the chop, and in doing so, move the “grip sweet spot” (or whatever you want to call it) off-center at the top of the chop, so that it wouldn’t be right above the screw. Here’s a shot showing the mortise for the parallel guide and a dowel leading to where that spot will be on my bench:
The off-center hole in the leg is part of the design. The idea is to place the spot with the maximum force somewhere around the area where the side of the leg meets the top.
In addition, by moving the parallel guide over to the side, I could move the guide’s clearance mortise in the leg over to the side. There, the parallel guide would slip neatly alongside the giant lower side stretcher rather than above or below, sidestepping one of the common issues when installing a leg vise.
It’s easiest to show this in the nearly finished installation:
Now, at this point, I should mention that more often than not, when you try to get clever, you end up shooting yourself in the foot (especially if you’ve never done this before). To put it lightly, this configuration does not come without difficulty. In addition to having to be extra careful with your layout, you’re also introduction an element of imbalance to a vise that really seems to have been designed to be horizontally symmetric. It goes without saying that when you go tinkering, the chop will want to lean in one direction, possibly binding the vise screw and sliding the parallel guide up against its clearance mortise.
To my surprise, it’s been working well so far. It took some fine-tuning, but the the parallel guide rollers, when set just so, seem to do a good job at supporting a good deal of the weight of the chop. The acetal bushing that comes with the Glide is also instrumental in keeping the chop inline. As an extra measure, I reduced the weight of the chop a bit by sawing off a bit of the lower right, but this may have just as well been to be able to use the offcut for something else.
I still might get burned by all of this, so let’s see what happens. I’m really due with this project–I also lucked out with the length of the vise screw and parallel guide. When vise is closed, they are about 1/8″ from hitting the inside of the rear left leg of the bench.
Now at this point, I have to make a confession: I used a power tool in the vise construction. It’s not what you might think, though. You see, the Glide vise requires you to tap threads in wood. Miraculously, I somehow already had the four taps required for the job (picked them up at a garage sale once but never used them), and I had everything I needed to drill the initial holes for all of the taps by hand. However, what I didn’t have was a tap wrench with a collet large enough to hold the two largest taps. At that point, I had to either buy another tap wrench or think of something else. The taps fit in a brace chuck, but the action on a brace can be a little bit too wobbly for this job. I decided that I didn’t have the stomach to go out and buy some (likely crummy) tap wrench for just this time, so I’d actually follow the instructions for the Glide for a change. I chucked the two big taps into my cordless power drill and threaded the holes with the dark side of the force.
With the legs made, it was time to move on to the stretchers. The method I used was a combination of knockdown and mortise-and-tenon joints. I first made the joints with very short tenons. These are primarily for quick alignment of the joint during assembly.
Then I bored holes square into the legs and had them come out right in the center of where the mortises were. (In reality, I did this before making the joints, but you get the idea.)
The idea is to slip a bolt into the hole and into a captured nut in the stretcher.
The trickiest step was to bore precisely into the endgrain of the tenon pieces. To do this, I assembled the joint, secured it with clamps, then went through the existing hole down into the tenon piece below:
I was surprised at how quickly the Jennings bit flew through the endgrain. I recall having a lot of trouble with endgrain when I did the first bench, but I suppose that having a halfway decent complement of bits and knowing how to sharpen them goes a long way.
Next was to make the mortise for where the captured nut would go. I hit it first with my Irwin 20 (1.25″) bit in my 14″-sweep brace (maybe you could call it the Irwin Workout from Millers Falls):
I didn’t go all the way–the captured nuts will not be visible from the outside of the bench.
Then I made one side of the hole flat for the nut and washer to register against. This was an easy job with a big “pigsticker” mortise chisel:
Finally, here is how the joint appears in the end with the bolt, nut, and washer in place:
If this looks a little ugly, it is. This side of the stretcher faces the inside, where no one can see it. Therefore, I didn’t bother with anything other than rough planing (especially important to me, given how quickly this wood dulls blades). The mortise shape is somewhat interesting, and that’s something to maybe file away. But on the other side (the face side), it looks like a normal (tight) mortise-and-tenon joint.
The past few weeks have primarily involved milling, milling, and more milling. Oh, right, there was also a trip to Pennsylvania. But after all of that excitement, I was able to glue the top. I used every medium- and heavy-duty clamp that I had for it:
Then I glued that piece of beech to the front, flattened the top, then flattened the bottom.
I’m not going to talk too much about this flattening and milling process because it was exhausting enough just to do it. The main reason was that the douglas-fir just ate up my plane blades–I constantly had to resharpen them. I’m not sure why this is the case, but it might have something to do with the hardened resin in this old wood. In any case, dull blades are next to useless on this stuff, and sometimes it takes a little while for it to dawn on you that you’re working with dull tools.
In any case, I was finally at the point where I could fit the legs. I’ve been thinking about the joints for the legs for a long, long time. I can’t say that I understand the monster through tenon joint illustrated in Roubo’s book. Schwarz only seems to say that “well, this is how it’s illustrated there, so that’s what I’m gonna use,” and that’s all fine and good, but I still don’t get it. Sure, you want a tenon, but should it really be through? That makes the top more difficult to reflatten. Plus, the through joint creates a weak point in the front left, especially if your wood over there is suspect to begin with. Roy Underhill illustrated what happens to that sort of thing at WIA.
Believe it or not, I like Underhill’s rising dovetail idea better for this kind of joint. Not that it’s any better with the weakness in the wood, but there is one property of it that I haven’t really seen anyone talk about in conjunction with a leg vise. If you think about it, because the top sinks down from the front, when a leg vise clamps something into place against any part of the top, it wedges the top into the leg.
As cool as that joint looks, I still did not want to use a through joint for my legs, so I just used angled mortises and tenons so that the top would still sink down from the front. I used a very slight angle (using the “eh, that looks about right” calculation with the sliding T-bevel), and before I started, I made a couple of guides to help. Here’s one that helped me guide my brace and bit as I wasted most of the mortise.
After boring and chopping out most of the waste, I registered the chisel face against this guide to pare out the sides at the angle necessary.
One advantage of making mortises this large is that you can shove a T-bevel into the mortise to verify that you got the side correct:
Here’s a finished joint (this time for the rear of the bench). It’s only a little more than an inch deep, and I do not plan to use glue, but I figure that the mass of the top will be more than enough to keep it in place:
If I’m wrong, I’ll use fasteners to wedge the joints into place.
It was a fine sight when I completed all four joints for the top:
These joints, however, didn’t really take much time (despite having only my fine-toothed joinery saw available to cut the tenons). Sure, I had to be a little more careful with the angles on the joints, but compared to process of preparing the top that I’d just been through, it was nothing.
Next up: Getting the stretchers in place, and installing the vises.
At the end of the last installment, I had the workbench top-milling task to deal with. I’ve never worked with anything this large before, so I didn’t quite know what to do. A little rough experimentation revealed that the grain reversed on the faces of the timbers about two-thirds of the way across, where the face became tangential to the growth rings (a common occurrence in this type of sawcut).
In light of this, I decided to rip the timbers at the point that the grain reversed, so that I could match the grain direction across the entire width of the top (it also didn’t hurt that there were a lot of monster knots on the “thin” side). That would give me two roughly 8″ sections that I’d be able to mill and glue up.
The first thing I needed to do was support the timbers while ripping. I had a choice between making sawbenches or just going out to get a couple of 2x4s to fill in the sawhorse brackets that I had on hand (I’d long since scavenged most of the pieces I used the last time I used the sawhorses). I opted to defer the sawbenches again and got the 2x4s.
Ripping six feet on two of these timbers was a chore, but not quite as bad as I’d expected. It helped that I sharpened my big rip saw before. In the end, I had to make four of those cuts (two at the point where the grain reversed, and two more at the ends to eliminate some excessively bashed-up wood).
So then it was on to milling. Now I really had no clue what to do. The first thing I tried to mill the edges was to fasten some handscrews in an odd arrangement to hook it to the end of my bench:
This was quite a secure arrangement, but it didn’t work for two reasons: First, there was too much junk in the shop to the right of the timber to get a jointer plane over there, and second, the timber was now far too high off the ground for me to reasonably bear down on.
After some fretting and sulking, I reminded myself that Toshio Odate wrote about how Japanese carpenters secure stuff both big and small against a wall (or something). Looking at pages 6-7 of his Japanese Woodworking Tools book, I tried to think of how I might be able to do this with with western tools. The one really important thing, it seemed to me, was to be able to keep some clearance between the end of the timber and whatever you’re securing against.
In the end, I came to this arrangement with the same sawhorses that I used to rip the timbers:
One end of the timber rests on a board with a clamped stop, and that board sits on top of the sawhorse with one end secured against a timber in the house. Here’s a look at the stop:
This is really nothing special, but it surprisingly worked quite well and I was able to mill and joint the timbers with no further ado.
Well, the “ado” would not apply to the task of lugging these timbers all over the place as I ripped, milled, and flipped them around. Ugh.
After I was finished jointing, I put the timbers side-by-side on my bench to see what I now had to deal with. Combined, they were 16 inches, and looking at this surprised me. I’d been thinking that I wanted 20″ across the top of the new bench, but now I wasn’t so sure. I believe that I’m going to trim that down to 18″, so now I need only one more 2″ wide strip to go across what will probably be the front of the bench.
The difficulty: Right now, I don’t have any pieces of douglas-fir in the appropriate size. The offcuts from the big rips are really a bit too knotty for my tastes (big knots in long-seasoned douglas-fir are essentially indestructible). I thought of getting one more timber, but then I had this other idea. I happen to have a piece of well-seasoned 8/4 beech that’s just the right length and width. Would it make sense to use that in the front? It doesn’t dent as easily as douglas-fir (even the excessively old stuff that I have).
Seems to me that it (or some other piece of hardwood) would work. Oh well, I won’t be able to work on this for two weeks now, so I’ll have that time to think about it.
So, what’s been happening with the new workbench? Not much, because I needed more wood, so I’ve instead been dorking around the shop, cleaning things, and rehabbing old tools.
Last Sunday, I got the next installment of wood, and I now have all of the legs and half of the stretchers milled out:
That was the easy part. The task ahead of me is considerably tougher:
Those are two 6.5′ 4x14s that will somehow comprise the top in the end. I really have only the faintest idea on how I’m going to support these things as I’m ripping and sizing them. I suppose I could finally make some sawbenches.
It’s time to get down to that new workbench. Everyone and their uncle is building a Roubo this year. Consequently, I’ll just be another voice in the din of people blogging about their Roubo builds, but hey, I’ll have a new workbench at the end.
I got the first pieces of wood for this project late last year. A fellow BAG has a pretty serious quantity of reclaimed douglas-fir sitting around and was gracious enough to offer it my way (thanks Bill!). This is big stuff–basically 4x12s and 4x14s supposedly taken from a warehouse. Reclaimed douglas-fir has many advantages, but two of the biggest are that it’s quite hard (yet easy to plane), and it’s really, really stable.
The boardstimbers had a layer of cruft on the faces, consisting of oxidization, dirt, and who-knows-what. After cutting roughly to length, I sawed off the crud. That process looked like this:
I’ve decided that I will do this project completely by hand, just so that I can say that I didn’t wimp out with a bandsaw (or something of that sort of masochistic nature). Freakishly-looking disembodied arm aside, I’ve been doing all of the heavy-duty ripping like this, and it’s really not that bad (Remember how I mentioned that reclaimed douglas-fir is really stable? That helps). The timber is held steady by the front vise of my current bench.
Getting rid of the grime this way yields funny cruft veneer:
I could probably sell this stuff to an artist.
So after sawing, I finished sizing up everything with the usual cast of planes. With the wood I had on hand, I got three major components of the base: two legs (front and middle) and a stretcher (rear):
The plan for the legs is 5″x3.5″ and the stretchers will be 6″x3.5″. I won’t be thicknessing the stretchers precisely because there’s no need. You can tell how the scale compares to my current bench from the preceding photo.
And now I’m out of wood, at least for big stuff. Time to get another load!
[edit: It planes easily, but as I learned later, this wood dulls plane blades very quickly.]
Just as I was getting ready to get started on a new project (or tool), something pops up. In this case, it’s the following:
Thanks to Alex, Jasen, Calvin, Rachel, and Paul for giving this to celebrate a, er, “major life change” (sorry for the vagueness, but I prefer not to go into personal stuff much in this blog).
I had a chance to dig it out and look at it today, and you can see that I’ve got to make some decisions on how I want to install this:
The stock instructions from Lee Valley show mounting the vise jaw as an extension to a bench apron. Of course, I don’t have one of those, nor is my benchtop very thick, and furthermore, my benchtop does not have much overhang.
This overhang is the major issue. It seems that you need a little more than 16″ of overhang on the end of your bench to mount this sucker, or otherwise, it’s going to get in the way of your legs. My bench doesn’t have anywhere near that–it’s more like 6.5″ on each side, so I can’t even just shove the top over.
So if I want to use this vise sometime in the near future, I have to make some sort of serious or semi-serious modification. There are these options:
Make a new top. I have enough beech to do this, and I could also look for some reclaimed stuff.
Extend the top by replacing the front.
Make an entirely new bench. [Ed: This is what I eventually did.]
Attempt to make it into a wagon vise.
Attempt to make an L-shaped jaw. Unlike the traditional tail vise jaw, this would be rotated 90 degrees. This is kind of a crazy idea but it might just work and it might be the easiest of the options, because the vise only travels 7″ or so.
In any case, there’s some thinking to do, especially because I had wanted to think about what to do about the front overhang. The Gospel of Schwarz says that the front should line up flush with the legs and I agree. I’ve been itching to make this change to my bench but it does require some work. Perhaps making a new bench would be easier, but do I need another bench? It’s tempting to use the current bench as an auxiliary, especially because I like to clamp stuff to its top, and the edge is great for the bench hook.
Oh well. Lots of thinking to do.
[Ed.: Phil Lang provided this link for what Konrad Sauer did.]